Search results for "Intuitionistic type theory"
showing 2 items of 2 documents
Inductive types in homotopy type theory
2012
Homotopy type theory is an interpretation of Martin-L\"of's constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof s…
Collection Principles in Dependent Type Theory
2002
We introduce logic-enriched intuitionistic type theories, that extend intuitionistic dependent type theories with primitive judgements to express logic. By adding type theoretic rules that correspond to the collection axiom schemes of the constructive set theory CZF we obtain a generalisation of the type theoretic interpretation of CZF. Suitable logic-enriched type theories allow also the study of reinterpretations of logic. We end the paper with an application to the double-negation interpretation.