Search results for "Intuitionistic type theory"

showing 2 items of 2 documents

Inductive types in homotopy type theory

2012

Homotopy type theory is an interpretation of Martin-L\"of's constructive type theory into abstract homotopy theory. There results a link between constructive mathematics and algebraic topology, providing topological semantics for intensional systems of type theory as well as a computational approach to algebraic topology via type theory-based proof assistants such as Coq. The present work investigates inductive types in this setting. Modified rules for inductive types, including types of well-founded trees, or W-types, are presented, and the basic homotopical semantics of such types are determined. Proofs of all results have been formally verified by the Coq proof assistant, and the proof s…

FOS: Computer and information sciencesComputer Science - Logic in Computer Science03B15 03B70 03F500102 computer and information sciences01 natural sciencesComputer Science::Logic in Computer ScienceFOS: MathematicsA¹ homotopy theoryCategory Theory (math.CT)0101 mathematicsMathematicsHomotopy lifting propertyType theory inductive types homotopy-initial algebraHomotopy010102 general mathematicsMathematics - Category TheoryIntuitionistic type theoryMathematics - LogicSettore MAT/01 - Logica MatematicaLogic in Computer Science (cs.LO)Algebran-connectedType theoryTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematicsProof theoryTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSHomotopy type theoryComputer Science::Programming LanguagesLogic (math.LO)
researchProduct

Collection Principles in Dependent Type Theory

2002

We introduce logic-enriched intuitionistic type theories, that extend intuitionistic dependent type theories with primitive judgements to express logic. By adding type theoretic rules that correspond to the collection axiom schemes of the constructive set theory CZF we obtain a generalisation of the type theoretic interpretation of CZF. Suitable logic-enriched type theories allow also the study of reinterpretations of logic. We end the paper with an application to the double-negation interpretation.

Discrete mathematicsInterpretation (logic)Dependent type theory constructive set theory propositions-as-typesComputer scienceConstructive set theoryIntuitionistic logicIntuitionistic type theoryDependent typeAlgebraMathematics::LogicTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDependent type theoryType theoryTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSComputer Science::Logic in Computer ScienceDouble negationSet theoryRule of inferenceAxiom
researchProduct